CRYSTAL CHEMISTRY OF LITHIUM ION BATTERY CATHODES

ARUMUGAM MANTHIRAM
Department of Mechanical Engineering
The University of Texas at Austin

Affiliations:
Materials Science and Engineering Program
Texas Materials Institute
Center for Nano and Molecular Science and Technology
CURRENT RESEARCH ACTIVITIES

- Lithium Ion Batteries
 - High capacity cathodes (portable electronic devices)
 - Low cost cathodes (electric and hybrid electric vehicles)

- Proton Exchange Membrane and Direct Methanol Fuel Cells
 - New non-platinum catalysts (oxygen reduction & fuel oxidation)
 - New high temperature, low methanol permeability membranes

- Solid Oxide Fuel Cells (Intermediate temperature: 500-800 °C)
 - New oxide catalysts (oxygen reduction & hydrocarbon fuel oxidation)

- Supercapacitors
 - New low cost electrode materials

- Solid State Chemistry of Inorganic Materials
 - Synthesis, characterization, structure-property-performance relationships
 - Nanostructured materials, alloys, oxides, and nitrides
• **Issues with Current Lithium Ion Battery Cathodes**

• **Layered Oxide Cathodes**
 - Factors limiting the reversible capacity
 - Factors influencing the power capability
 - New class of high energy density layered oxide cathodes for portables

• **Spinel Manganese Oxide Cathodes**
 - Factors influencing the capacity fade
 - New class of high power spinel oxyfluoride cathodes for EV and HEV

• **Conclusions**
LITHIUM ION BATTERIES

- Higher voltage, 4 V
- Higher energy density
- Compact, light weight
- Longer shelf life (> 10 years)
- Wider temp. range (-40 to 70 °C)

\[C_6 + LiCoO_2 \leftrightarrow Li_xC_6 + Li_{1-x}CoO_2 \]

The University of Texas at Austin
ISSUES WITH THE CATHODES

Layered LiCoO$_2$
- Only 50% of its theoretical capacity could be utilized
- Co is expensive and toxic; safety concerns
- Currently used for portable devices, but could not be employed for HEV and EV

Spinel LiMn$_2$O$_4$
- Mn is inexpensive and environmentally benign
- With a 3-dimensional structure provides high rate (power capability) and safety
- Attractive for HEV and EV applications
- Exhibits severe capacity fade at elevated temperatures

Olivine LiFePO$_4$
- Fe is inexpensive and environmentally benign
- With covalently bonded PO$_4$ groups, offers excellent chemical stability and safety
- Electronic insulator and low Li$^+$ ion conductivity
- Needs to be made as nanocrystalline and decorated with conductive carbon

The University of Texas at Austin
LAYERED OXIDE CATHODES
LAYERED LiMO$_2$ (M = Co, Ni, Mn) CATHODES (O3 TYPE)
Reversible Capacity Limits of Layered Cathodes

<table>
<thead>
<tr>
<th>Cathode</th>
<th>Reversible capacity (mAh/g)</th>
<th>% of theoretical capacity</th>
<th>Intercalation range in Li_{1-x}MO_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li_{1-x}[Co]O_2</td>
<td>140</td>
<td>50</td>
<td>0.5 ≤ (1-x) ≤ 1.0</td>
</tr>
<tr>
<td>Li_{1-x}[Ni_{0.85}Co_{0.15}]O_2</td>
<td>180</td>
<td>65</td>
<td>0.35 ≤ (1-x) ≤ 1.0</td>
</tr>
<tr>
<td>Li_{1-x}[Ni_{1/3}Mn_{1/3}Co_{1/3}]O_2</td>
<td>190</td>
<td>70</td>
<td>0.30 ≤ (1-x) ≤ 1.0</td>
</tr>
<tr>
<td>Li_{1-x}[Ni_{1-y-z}Mn_{y}Li_{z}]O_2</td>
<td>250</td>
<td>80</td>
<td>0.20 ≤ (1-x) ≤ 1.0</td>
</tr>
</tbody>
</table>

Theoretical capacity: ~ 280 mAh/g

Why do the materials show different capacities even though they all have the same crystal structure?
CHEMICAL LITHIUM EXTRACTION

• Chemical synthesis

\[\text{LiMO}_2 + x \text{ NO}_2\text{BF}_4 \rightarrow \text{Li}_{1-x}\text{MO}_2 + x \text{LiBF}_4 + x \text{NO}_2 \]

(Acetonitrile medium under argon atmosphere at room temp.)

• Structural characterization
 - X-ray diffraction (Rietveld analysis)

• Chemical characterization
 - Atomic absorption spectroscopy – Lithium content
 - Redox titration (iodometry) – Oxidation state
 - Thermogravimetric Analysis – Oxygen loss vs proton insertion
 - Mass Spectrometry – Oxygen loss vs proton insertion
 - Prompt Gamma-ray Activation Analysis – Proton content
Oxidation state becomes constant due to proton insertion caused by chemical instability.

COMPARISON OF PROTON CONTENTS IN CATHODES

<table>
<thead>
<tr>
<th>System</th>
<th>AAS Li content</th>
<th>PGAA H content</th>
<th>REDOX TITRATION</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCoO₂</td>
<td>0.03</td>
<td>0.44</td>
<td>3.64</td>
<td>H₀.₃₃Li₀.₀₃CoO₂</td>
</tr>
<tr>
<td>LiNiO₂</td>
<td>0.08</td>
<td>-</td>
<td>3.88</td>
<td>H₀.₀₅Li₀.₀₈NiO₂</td>
</tr>
<tr>
<td>LiNiO₂</td>
<td>0.22</td>
<td>0.06</td>
<td>3.76</td>
<td>H₀.₀₂Li₀.₂₂NiO₂</td>
</tr>
<tr>
<td>LiNi₀.₁/₃Mn₀.₁/₃Co₀.₁/₃O₂</td>
<td>0.02</td>
<td>0.48</td>
<td>3.58</td>
<td>H₀.₄₀Li₀.₀₂Ni₀.₁/₃Mn₀.₁/₃Co₀.₁/₃O₂</td>
</tr>
<tr>
<td>LiNi₀.₅Mn₀.₅O₂</td>
<td>0.07</td>
<td>0.59</td>
<td>3.58</td>
<td>H₀.₃₉Li₀.₀₇Ni₀.₅Mn₀.₅O₂</td>
</tr>
<tr>
<td>α-LiMnO₂</td>
<td>0.25</td>
<td>0.03</td>
<td>3.70</td>
<td>H₀.₀₅Li₀.₂₅MnO₂</td>
</tr>
<tr>
<td>LiMn₂O₄ (spinel)</td>
<td>0.03</td>
<td>0.03</td>
<td>3.97</td>
<td>H₀.₀₃Li₀.₀₃Mn₂O₄</td>
</tr>
<tr>
<td>LiMn₁.₅₈Ni₀.₄₂O₄</td>
<td>0.10</td>
<td>-</td>
<td>3.94</td>
<td>Li₀.₁₅Mnₑ.₅₈Ni₀.₄₂O₄</td>
</tr>
<tr>
<td>LiFePO₄</td>
<td>0.15</td>
<td>-</td>
<td>2.87</td>
<td>Li₀.₁₅FePO₄</td>
</tr>
</tbody>
</table>

- Layered LiCoO₂, LiNi₀.₅Mn₀.₅O₂, and LiNi₁/₃Mn₁/₃Co₁/₃O₂: Significant amount of proton insertion at deep lithium extraction
- LiNiO₂, α-LiMnO₂, LiMn₂O₄, and LiFePO₄: Little or no proton insertion
- Proton insertion may be related to chemical instability at deep lithium extraction
As the overlap of the M^{3+/4+}:3d band with the top of the O^{2-}:2p band increases, the lithium content at which chemical instability sets in during charge increases, which limits the reversible capacity.
PHASE RELATIONSHIPS OF DELITHIATED CATHODES

- Why does the crystal chemistry of delithiated phases vary?
STRUCTURAL NOMENCLATURE

O3 (ABCABC)

P3 (AABBCC)

O1 (ABABAB)

The University of Texas at Austin
CHEMICAL LITHIUM EXTRACTION RATE

<table>
<thead>
<tr>
<th>Cathode</th>
<th>Time required to extract all the lithium (h)</th>
<th>Structure of the end-member, MO₂</th>
<th>% Cation disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCoO₂</td>
<td>< 1</td>
<td>P3 (O1)</td>
<td>-</td>
</tr>
<tr>
<td>LiCo₀.₉Ni₀.₁O₂</td>
<td>1</td>
<td>P3 (O1)</td>
<td>-</td>
</tr>
<tr>
<td>LiCo₀.₈Ni₀.₂O₂</td>
<td>1</td>
<td>P3 (O1)</td>
<td>-</td>
</tr>
<tr>
<td>LiCo₀.₇Ni₀.₃O₂</td>
<td>1</td>
<td>P3 (O1)</td>
<td>-</td>
</tr>
<tr>
<td>LiCo₀.₅Ni₀.₅O₂</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LiCo₀.₃Ni₀.₇O₂</td>
<td>6</td>
<td>O₃’</td>
<td>2.1</td>
</tr>
<tr>
<td>LiCo₀.₁₅Ni₀.₈₅O₂</td>
<td>12</td>
<td>O₃’</td>
<td>3.0</td>
</tr>
<tr>
<td>LiNiO₂</td>
<td>48</td>
<td>O₃’</td>
<td>5.0</td>
</tr>
<tr>
<td>LiNi₀.₇₅Mn₀.₂₅O₂</td>
<td>36</td>
<td>O₃’</td>
<td>8.2</td>
</tr>
<tr>
<td>LiNi₀.₅Mn₀.₅O₂</td>
<td>36</td>
<td>O₃</td>
<td>11.8</td>
</tr>
</tbody>
</table>
Samples with cation disorder take longer time to extract all the lithium.

How do we understand the differences in the structures?
As the Co content increases, O3 \rightarrow O1 \rightarrow P3 occurs

• **At high Co content (e.g. LiCoO$_2$)**
 - Fast chemical lithium extraction rate (high charging rate) due to good cation ordering stabilizes the metastable P3 phase over O1 phase
 - High proton content may stabilize the P3 phase

• **At medium Co content (e.g. LiNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$)**
 - Moderate chemical lithium extraction rate (slow charging) due to some cation disorder (< 3 %) gives the thermodynamically stable O1 phase

• **At low Co content (e.g. LiNi$_{0.5}$Mn$_{0.5}$O$_2$)**
 - High cation disorder (> 6 %) prevents the formation of O1 or P3 phases due to a strong electrostatic repulsion across the shared faces
STABILITY OF Li_{1-x}MO_2: ELECTROSTATIC EFFECTS

Edge sharing alone

Edge and face sharing

The University of Texas at Austin
RATE CAPABILITY OF $\text{LiNi}_{0.5-0.5y}\text{Mn}_{0.5-0.5y}\text{Co}_y\text{O}_2$

- Charge-discharge between 3.0 – 4.3 V at C/10 rate to 4C rate
- Rate capability decreases with decreasing Co content
- Why does the rate capability decrease with decreasing Co content?
CATION DISORDER AND LITHIUM EXTRACTION RATE IN LiNi_{0.5-0.5y}Mn_{0.5-0.5y}Co_{y}O_{2}

• Cation disorder increases with decreasing Co content due to an increasing Ni^{2+} content and a smaller size difference between Ni^{2+} (0.69 Å) and Li^{+} (0.76 Å) (Co^{3+}: 0.0545 nm, Ni^{3+}: 0.056 nm; Mn^{3+}: 0.0645 nm; Mn^{4+}: 0.053 nm).

• Chemical lithium extraction rate (with NO_{2}BF_{4} in acetonitrile medium) decreases with decreasing Co content (0.15 ≤ y ≤ 1) due to an increasing cation disorder.
CATION DISORDER AND LITHIUM EXTRACTION RATE IN LiNi_{0.5-0.5y}Mn_{0.5-0.5y}Co_{y}O_{2}

- Decreasing chemical lithium extraction rate due to an increasing cation disorder leads to a decrease in electrochemical rate capability with decreasing Co content.
HIGH CAPACITY LAYERED OXIDE CATHODES

- Solid solution between layered Li$_2$MnO$_3$, Li(Li$_{1/3}$Mn$_{2/3}$O$_2$) and LiNi$_{1/3}$Mn$_{1/3}$Co$_{1/3}$O$_2$
- Large IRC in first cycle
- Surface modification modifies SEI layer, suppresses IRC from ~80 to 40 mAh/g, and increases reversible capacity (285 mAh/g)

- Two times higher energy density compared to layered LiCoO$_2$
- Attractive for portable electronic devices

The University of Texas at Austin
Advantages:
• Mn is inexpensive and environmentally benign
• Good structural and chemical stability (high rate capability) due to
 - 3-dimensional edge-shared MnO$_6$ octahedral framework
 - Mn$^{3+/4+}$.e$_g$ band lying well above the O$^{2-}$.2p band

Problem:
• Severe capacity fade at elevated temperatures (55 °C)
 - Mn dissolution from the lattice (2Mn$^{3+}$ \rightarrow Mn$^{2+}$ + Mn$^{4+}$)
CATION SUBSTITUTED MANGANESE SPINEL OXIDES

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Composition</th>
<th>Mn Valence</th>
<th>Lattice Parameter (Å)</th>
<th>Sample No.</th>
<th>Composition</th>
<th>Mn Valence</th>
<th>Lattice Parameter (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LiMn$_2$O$_4$</td>
<td>3.5</td>
<td>8.2489</td>
<td>15</td>
<td>LiMn${1.9}$Fe${0.05}$Li$_{0.05}$O$_4$</td>
<td>3.58</td>
<td>8.225</td>
</tr>
<tr>
<td>2</td>
<td>LiMn${1.95}$Li${0.05}$O$_4$</td>
<td>3.56</td>
<td>8.2319</td>
<td>16</td>
<td>LiMn${1.9}$Co${0.05}$Li$_{0.05}$O$_4$</td>
<td>3.58</td>
<td>8.2212</td>
</tr>
<tr>
<td>3</td>
<td>LiMn${1.9}$Li${0.1}$O$_4$</td>
<td>3.63</td>
<td>8.2179</td>
<td>17</td>
<td>LiMn${1.8}$Co${0.1}$Li$_{0.1}$O$_4$</td>
<td>3.67</td>
<td>8.2013</td>
</tr>
<tr>
<td>4</td>
<td>LiMn${1.9}$Al${0.1}$O$_4$</td>
<td>3.53</td>
<td>8.2411</td>
<td>18</td>
<td>LiMn${1.9}$Ni${0.05}$Li$_{0.05}$O$_4$</td>
<td>3.61</td>
<td>8.2181</td>
</tr>
<tr>
<td>5</td>
<td>LiMn${1.9}$Ti${0.1}$O$_4$</td>
<td>3.47</td>
<td>8.2493</td>
<td>19</td>
<td>LiMn${1.85}$Ni${0.05}$Li$_{0.1}$O$_4$</td>
<td>3.68</td>
<td>8.2041</td>
</tr>
<tr>
<td>6</td>
<td>LiMn${1.9}$Al${0.05}$Ti$_{0.05}$O$_4$</td>
<td>3.55</td>
<td>8.2401</td>
<td>20</td>
<td>LiMn${1.88}$Ni${0.06}$Li$_{0.06}$O$_4$</td>
<td>3.63</td>
<td>8.2138</td>
</tr>
<tr>
<td>7</td>
<td>LiMn${1.9}$Co${0.1}$O$_4$</td>
<td>3.53</td>
<td>8.2319</td>
<td>21</td>
<td>LiMn${1.9}$Ni${0.075}$Li$_{0.025}$O$_4$</td>
<td>3.59</td>
<td>8.2222</td>
</tr>
<tr>
<td>8</td>
<td>LiMn${1.8}$Co${0.2}$O$_4$</td>
<td>3.56</td>
<td>8.2103</td>
<td>22</td>
<td>LiMn${1.875}$Ni${0.075}$Li$_{0.05}$O$_4$</td>
<td>3.63</td>
<td>8.2133</td>
</tr>
<tr>
<td>9</td>
<td>LiMn${1.9}$Ni${0.1}$O$_4$</td>
<td>3.58</td>
<td>8.2319</td>
<td>23</td>
<td>LiMn${1.85}$Ni${0.075}$Li$_{0.075}$O$_4$</td>
<td>3.66</td>
<td>8.208</td>
</tr>
<tr>
<td>10</td>
<td>LiMn${1.85}$Ni${0.15}$O$_4$</td>
<td>3.62</td>
<td>8.2086</td>
<td>24</td>
<td>LiMn${1.85}$Ni${0.1}$Li$_{0.05}$O$_4$</td>
<td>3.65</td>
<td>8.2126</td>
</tr>
<tr>
<td>11</td>
<td>LiMn${1.8}$Ni${0.2}$O$_4$</td>
<td>3.67</td>
<td>8.2139</td>
<td>25</td>
<td>LiMn${1.8}$Ni${0.1}$Li$_{0.1}$O$_4$</td>
<td>3.72</td>
<td>8.2023</td>
</tr>
<tr>
<td>12</td>
<td>LiMn${1.9}$Cu${0.1}$O$_4$</td>
<td>3.58</td>
<td>8.2289</td>
<td>26</td>
<td>LiMn${1.9}$Cu${0.05}$Li$_{0.05}$O$_4$</td>
<td>3.61</td>
<td>8.2228</td>
</tr>
<tr>
<td>13</td>
<td>LiMn${1.9}$Al${0.05}$Li$_{0.05}$O$_4$</td>
<td>3.58</td>
<td>8.2293</td>
<td>27</td>
<td>LiMn${1.8}$Cu${0.1}$Li$_{0.1}$O$_4$</td>
<td>3.72</td>
<td>8.2069</td>
</tr>
<tr>
<td>14</td>
<td>LiMn${1.85}$Ti${0.075}$Li$_{0.075}$O$_4$</td>
<td>3.58</td>
<td>8.2305</td>
<td>28</td>
<td>LiMn${1.9}$Ga${0.05}$Li$_{0.05}$O$_4$</td>
<td>3.58</td>
<td>8.2324</td>
</tr>
</tbody>
</table>

EFFECT OF INITIAL MANGANESE VALENCE

• Two regions with a boundary around a Mn valence of 3.58+

CAPACITY RETENTION OF SPINEL CATHODES

![Graph showing capacity retention of spinel cathodes at 25°C and 60°C.](image)

- **LiMn$_2$O$_4$**
- **LiMn$_2$O$_{3.92}$F$_{0.08}$**
- **LiMn$_{1.8}$Li$_{0.2}$O$_4$**
- **LiMn$_{1.8}$Li$_{0.2}$O$_{3.88}$F$_{0.12}$**
- **LiMn$_{1.8}$Li$_{0.2}$O$_{3.79}$F$_{0.21}$**
- **LiMn$_{1.8}$Li$_{0.1}$Ni$_{0.1}$O$_4$**
- **LiMn$_{1.8}$Li$_{0.1}$Ni$_{0.1}$O$_{3.9}$F$_{0.1}$**
- **LiMn$_{1.8}$Li$_{0.1}$Ni$_{0.1}$O$_{3.8}$F$_{0.2}$**

- 3.5 – 4.3 V
- C/5 rate

The University of Texas at Austin
XRD PATTERNS OF SPINEL OXYFLUORIDES

- **Composition**
 - LiMn$_2$O$_4$
 - LiMn$_{2.02}$O$_{3.79}F_{0.21}$
 - LiMn$_{1.80}$Li$_{0.20}$O$_{3.88}F_{0.12}$
 - LiMn$_{1.80}$Li$_{0.20}$O$_{3.79}F_{0.21}$
 - LiMn$_{1.80}$Li$_{0.10}$Ni$_{0.10}$O$_{3.90}F_{0.10}$
 - LiMn$_{1.80}$Li$_{0.10}$Ni$_{0.10}$O$_{3.80}F_{0.20}$

- **Mn valence**
 - 3.50
 - 3.46
 - 3.78
 - 3.71
 - 3.72
 - 3.67
 - 3.61

- **Lattice parameter (Å)**
 - 8.2451
 - 8.2497
 - 8.2002
 - 8.2034
 - 8.2113
 - 8.2091
 - 8.2138
 - 8.2252

The University of Texas at Austin
RATE CAPABILITY AND STORAGE CHARACTERISTICS

The University of Texas at Austin
RELATIONSHIP BETWEEN IRC AND CAPACITY FADE

1: LiMn$_2$O$_4$
2: LiMn$_2$O$_{3.92}$F$_{0.08}$
3: LiMn$_{1.8}$Li$_{0.2}$O$_4$
4: LiMn$_{1.8}$Li$_{0.2}$O$_{3.88}$F$_{0.12}$
5: LiMn$_{1.8}$Li$_{0.2}$O$_{3.79}$F$_{0.21}$
6: LiMn$_{1.8}$Li$_{0.1}$Ti$_{0.1}$O$_4$
7: LiMn$_{1.8}$Li$_{0.1}$Ti$_{0.1}$O$_{3.9}$F$_{0.1}$
8: LiMn$_{1.8}$Li$_{0.1}$Cu$_{0.1}$O$_4$
9: LiMn$_{1.8}$Li$_{0.1}$Cu$_{0.1}$O$_{3.9}$F$_{0.1}$
10: LiMn$_{1.8}$Li$_{0.1}$Ni$_{0.1}$O$_4$
11: LiMn$_{1.8}$Li$_{0.1}$Ni$_{0.1}$O$_{3.9}$F$_{0.1}$
12: LiMn$_{1.8}$Li$_{0.1}$Ni$_{0.1}$O$_{3.8}$F$_{0.2}$

The University of Texas at Austin
CUBIC TO CUBIC TRANSITION IN SPINEL CATHODES

Ex-situ (chemically delithiated)

In-situ (electrochemical - BNL)

The University of Texas at Austin
ORIGIN OF CAPACITY FADE IN SPINEL CATHODES

1: LiMn$_2$O$_4$
2: LiMn$_{2}$O$_{3.92}$F$_{0.08}$
3: LiMn$_{1.8}$Li$_{0.2}$O$_4$
4: LiMn$_{1.8}$Li$_{0.2}$O$_{3.88}$F$_{0.12}$
5: LiMn$_{1.8}$Li$_{0.2}$O$_{3.79}$F$_{0.21}$
6: LiMn$_{1.8}$Li$_{0.1}$Ti$_{0.1}$O$_4$
7: LiMn$_{1.8}$Li$_{0.1}$Ti$_{0.1}$O$_{3.9}$F$_{0.1}$
8: LiMn$_{1.8}$Li$_{0.1}$Cu$_{0.1}$O$_4$
9: LiMn$_{1.8}$Li$_{0.1}$Cu$_{0.1}$O$_{3.9}$F$_{0.1}$
10: LiMn$_{1.8}$Li$_{0.1}$Ni$_{0.1}$O$_4$
11: LiMn$_{1.8}$Li$_{0.1}$Ni$_{0.1}$O$_{3.9}$F$_{0.1}$
12: LiMn$_{1.8}$Li$_{0.1}$Ni$_{0.1}$O$_{3.8}$F$_{0.2}$
COMPARISON OF TRANSITION METAL ION DISSOLUTION

<table>
<thead>
<tr>
<th>Structure</th>
<th>Composition</th>
<th>Mn</th>
<th>Ni</th>
<th>Co</th>
<th>Fe</th>
<th>total</th>
<th>Mn^{n+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layered</td>
<td>LiCoO$_2$</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td>0.8</td>
<td>Mn^{4+}</td>
</tr>
<tr>
<td></td>
<td>LiNi${0.5}$Mn${0.5}$O$_2$</td>
<td>0.4</td>
<td>0.7</td>
<td></td>
<td></td>
<td>1.1</td>
<td>Mn^{4+}</td>
</tr>
<tr>
<td></td>
<td>LiNi${0.33}$Mn${0.33}$Co$_{0.33}$O$_2$</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
<td>0.9</td>
<td>Mn^{4+}</td>
</tr>
<tr>
<td></td>
<td>LiNi${0.25}$Mn${0.25}$Co$_{0.5}$O$_2$</td>
<td>0.4</td>
<td>0.9</td>
<td>0.5</td>
<td></td>
<td>1.8</td>
<td>Mn^{4+}</td>
</tr>
<tr>
<td></td>
<td>LiMn${0.8}$Cr${0.2}$O$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
<td>Mn^{3+}</td>
</tr>
<tr>
<td></td>
<td>LiMnO$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2</td>
<td>Mn^{3+}</td>
</tr>
<tr>
<td></td>
<td>LiMn$_2$O$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2</td>
<td>$\text{Mn}^{3.50+}$</td>
</tr>
<tr>
<td></td>
<td>LiMn${1.8}$Li${0.1}$Ti$_{0.1}$O$_4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>$\text{Mn}^{3.61+}$</td>
</tr>
<tr>
<td>4 V spinel</td>
<td>LiMn${1.8}$Li${0.1}$Ti${0.1}$O${3.9}$F$_{0.1}$</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
<td>$\text{Mn}^{3.56+}$</td>
</tr>
<tr>
<td></td>
<td>LiMn${1.8}$Li${0.1}$Ni$_{0.1}$O$_4$</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
<td>$\text{Mn}^{3.72+}$</td>
</tr>
<tr>
<td></td>
<td>LiMn${1.8}$Li${0.1}$Ni${0.1}$O${3.8}$F$_{0.2}$</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td>$\text{Mn}^{3.61+}$</td>
</tr>
<tr>
<td></td>
<td>LiMn${1.5}$Ni${0.5}$O$_4$</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td></td>
<td>0.6</td>
<td>Mn^{4+}</td>
</tr>
<tr>
<td>5 V spinel</td>
<td>Li${1.05}$Mn${1.53}$Ni$_{0.42}$O$_4$</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
<td></td>
<td>0.3</td>
<td>Mn^{4+}</td>
</tr>
<tr>
<td></td>
<td>LiMn${1.42}$Ni${0.42}$Co$_{0.16}$O$_4$</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td></td>
<td>0.6</td>
<td>Mn^{4+}</td>
</tr>
<tr>
<td>Olivine</td>
<td>LiFePO$_4$</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The % capacity fade decreases with decreasing lattice parameter difference between the cubic phases.
HPPC Pulse Profile

• HPPC tests were performed after every 10 cycles at 100 % SOC
• Cycling was performed at C/2 rate
AFTER CYCLING WITH HPPC TEST (100 CYCLES)

LiMn$_2$O$_4$

before Cycling

![Graph](before_cycling_graph_li_mn2o4)

after Cycling

![Graph](after_cycling_graph_li_mn2o4)

LiMn$_{1.8}$Li$_{0.1}$Ni$_{0.1}$O$_{3.8}$F$_{0.2}$

before Cycling

![Graph](before_cycling_graph_li_mn18li01ni01o38f02)

after Cycling

![Graph](after_cycling_graph_li_mn18li01ni01o38f02)
PERFORMANCE IN LITHIUM ION CELLS AT 60 °C

Graph:
- **Capacity (mAh/g)** vs **Cycle number**
- Points represent different compositions:
 - **LiMn$_2$O$_4$**
 - **LiMn$_{1.8}$Li$_{0.1}$Ni$_{0.1}$O$_{3.8}$F$_{0.2}$**
 - **70 wt % LiMn$_{1.8}$Li$_{0.1}$Ni$_{0.1}$O$_{3.8}$F$_{0.2}$ + 30 wt% LiCoO$_2$**

Text:
- **Compositions and Dissolved Mn:**
<table>
<thead>
<tr>
<th>Composition</th>
<th>Dissolved Mna (%)</th>
<th>Dissolved Mnb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiMn$_2$O$_4$</td>
<td>0.83</td>
<td>0.67</td>
</tr>
<tr>
<td>LiMn${1.8}$Li${0.1}$Ni${0.1}$O${3.8}$F$_{0.2}$</td>
<td>0.27</td>
<td>0.19</td>
</tr>
<tr>
<td>LiMn${1.8}$Li${0.1}$Ni${0.1}$O${3.8}$F$_{0.2}$ (70 %) + LiCoO$_2$ (30 %)</td>
<td>0.11</td>
<td>0.08</td>
</tr>
</tbody>
</table>

- **After storing at 4.7 V for 7 days at the end of first charge**
- **After storing at 3.5 V for 7 days at the end of first discharge**

- **Note:**
 - Charging the spinel + layered oxide mixture to 4.7 in the first cycle traps the proton in the layered oxide lattice and suppresses Mn dissolution.

The University of Texas at Austin
CONCLUSIONS

- Crystal chemistry plays a critical role in controlling the electrochemical performances of lithium ion battery cathodes

Layered cathodes

- Reversible capacity is limited by chemical and structural instabilities
- Rate (power) capability is controlled by lithium extraction rate, which decreases with increasing cation disorder
- Surface modified complex solid solutions between Li$_2$MnO$_3$ and Li[Ni,Mn,Co]O$_2$ offer high capacities of 285 mAh/g with low IRC

Spinel Cathodes

- Cation-substituted oxyfluorides exhibit excellent capacity retention at 60 °C with high power capability – Attractive for EV and HEV applications
- The better performance is due to a smaller lattice parameter difference between the two cubic phases formed and reduced Mn dissolution
ACKNOWLEDGMENTS

Postdoctoral Researchers and Students:
Current members: 14 Ph.D. students and 3 postdoctoral fellows
Ph.D. students graduated: 18

Emilio Alvarez T. A. Arunkumar Ramanan Chebiam
Jehwon Choi Wonchang Choi Fernando Prado
Youngjoon Shin S. Venkatraman Yan Wu

Financial Support:
Welch Foundation
Department of Energy (DOE)
National Aeronautics and Space Administration (NASA)
State of Texas